Reaction of Trimethylsilylpropiolyl Chloride with Diamines and 2-Aminoethanethiol

L.P.Safronova, M. V. Andreev, A. V.Afonin, and A.S.Medvedeva
Faworsky Institute of Chemistry, Siberian Department, Russian Academy of Sciences, Irkursk, 664033 Russia

Received August 8, 2001

Abstract

Reaction of 3-trimethylsilyl-2-propiolyl chloride with ethylenediamine and hexamethylenediamine provided previously unknown bis(trimethylsilylpropiolyl)amides. Reactions of the acyl halide with 1,2-phenylenediamine and 2-aminoethanethiol proceeded regioselectively at a single reaction center to furnish amino- and thioamides of trimethylsilylpropiolic acid.

The development of propynamides chemistry is due to their high reactivity and to pharmacophoric character of the ethynylamide moiety as follows from the wide range of biological activity exhibited by compounds of this class [1-8]. They are also suitable for synthesis of natural amides, e.g., immunosuppressing rapamycin [9]. α, β-Siliconacetylene amides are less known. N-Benzyl-3-trimethylsilyl-2-propynamide prepared from lithium 2-propynamide dianion and trimethylchlorosilane took up phenyl isocyanate to afford Z-trimethylsilylhydantoin [10] and was selectively reduced on $\mathrm{Pd} / \mathrm{CaCO}_{3}$ into ethylenesilylamide or saturated silylamides [11]. Among the α, β-siliconacetylene amides we synthesized $[12,13]$, were found compounds with fungicidal, insecticidal, and antiphlogistic activity [14, 15].

In the preceding communication [16] we reported on the preparation of trimethylsilylpropiolic acid N-hydroxyamides by reaction of trimethylsilylpropiolyl chloride with silyl ethers of aminoalcohols. By an example of monoethanolamine we demonstrated that, depending on the reaction conditions both NH and OH groups can be simultaneously involved into the reaction giving rise to 2 -(3-trimethylsilylpropiolylamino)ethyl trimethylsilylpropiolate.

In extension of regular studies on reactions of trimethylsilylpropiolyl chloride (I) with functionally substituted amines we report here on reactions of compound I with ethylenediamine (II), hexamethylenediamine (III), 1,2-phenylenediamine (IV), and 2-aminoethanethiol (V).

It was established that the reaction direction depended on the character of nucleophile. For instance, the reaction between 3-trimethylsilyl-2propiolyl chloride (I) with two moles of ethylenedi-
amine (II) or hexamethylenediamine (III) gave rise only to diacyl derivatives in spite of excess diamine. The reaction readily occurs in ethyl ether at $-10-0^{\circ} \mathrm{C}$ affording previously unknown trimethylsilylpropiolic acid N-2-(3-trimethylsilylpropiolylaminoethyl)amide (VI) and N-6-(3-trimethylsilylpropiolylaminohexyl)amide (VII) in high yield.

Yields, physical constants, and elemental analyses of compounds obtained are given in Table 1.

IR spectra of compounds VI and VII contain characteristic absorption bands of stretching vibrations of $\mathrm{Si}-\mathrm{Me}$ bond at frequencies 735-760, 845-$850,1240-1260$, of $\mathrm{C}=\mathrm{O}$ bond at 1620-1630, triple bond $\mathrm{Si}-\mathrm{C} \equiv \mathrm{C}$ at 2170 , and NH group in the region $3220-3280 \mathrm{~cm}^{-1}$; to bending vibrations of $\mathrm{N}-\mathrm{H}$ bond corresponds the absorption band at $1510-1550 \mathrm{~cm}^{-1}$ (Table 1). The structure of diamides VI and VII was also confirmed by ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, and ${ }^{29} \mathrm{Si}$ NMR spectra listed in Table 2. Similar to the ${ }^{1} \mathrm{H}$ NMR spectrum of

[^0]Table 2. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{29} \mathrm{Si}$ NMR spectra of compounds VI-IX, δ, ppm

Compd. no.	${ }^{1} \mathrm{H}$ NMR spectrum				${ }^{13} \mathrm{C}$ NMR spectrum					${ }^{29} \mathrm{Si}$ NMR spectrum
	$\mathrm{Me}_{3} \mathrm{Si}$	NH	$\mathrm{N}-\mathrm{CH}_{2}$	$\mathrm{CH}_{2}-\mathrm{C}$	$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{Si}$	$\mathrm{Si} \underline{\underline{C}} \equiv \mathrm{C}$	$\mathrm{SiC} \equiv \underline{\mathrm{C}}$	$\mathrm{C}=\mathrm{O}$	C-NH	
VI	0.22 s (9H)	$6.31 \mathrm{~s}(1 \mathrm{H})$	3.43 t (2H)	-	-0.49	92.73	97.42	153.93	40.07	-17.61
VII ${ }^{\text {a }}$	0.21 s	5.87 s	3.26 q	1.50 m	-0.26,	90.88	98.36	152.75	40.08	-17.78
	$0.23 \mathrm{~s}(9 \mathrm{H})$	5.76 s (1H)	3.38 q (2H)	1.60 m (2H)	-0.29					
VIII ${ }^{\text {b }}$	0.20 s (9H)	$7.35 \mathrm{~s}(1 \mathrm{H})$	-	-	-0.58	90.13	-17.93	157.75	39.66	-17.93
IX ${ }^{\text {c }}$	0.21 s (9H)	$\begin{gathered} 6.99 \text { br.s } \\ (1 \mathrm{H}) \end{gathered}$	$3.45 \mathrm{q}(2 \mathrm{H})$	2.68 q (2H)	-	-	-	-	-	-

${ }^{\text {a }}$ Chemical shift, δ, ppm: $1.34 \mathrm{~m}\left(2 \mathrm{H}, \mathrm{CH}_{2}^{\gamma} \mathrm{C}\right) .{ }^{13} \mathrm{C}$ NMR signals, δ, ppm: $29.57\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 26.41\left(\mathrm{CH}_{2} \underline{\mathrm{CH}}_{2}\right)$.
${ }^{\mathrm{b}}$ Chemical shifts, δ, ppm: $3.75 \mathrm{~s}\left(2 \mathrm{H}, \mathrm{NH}_{2}\right), 6.75 \mathrm{~m}\left(1 \mathrm{H}, \mathrm{H}^{3}\right), 6.77 \mathrm{t}\left(1 \mathrm{H}, \mathrm{H}^{5}\right), 7.03 \mathrm{t}\left(1 \mathrm{H}, \mathrm{H}^{4}\right), 7.24 \mathrm{~d}\left(1 \mathrm{H}, \mathrm{H}^{6}\right)$ of aromatic ring ${ }^{13} \mathrm{C}$ NMR signal, δ, ppm: $127.45(\mathrm{Ph})$.
${ }^{c}$ Chemical shift, δ, ppm: $1.46 \mathrm{t}(1 \mathrm{H}, \mathrm{SH})$.
hydroxyamide $\mathrm{Me}_{3} \mathrm{SiC} \equiv \mathrm{CCONHCH}_{2} \mathrm{CH}_{2} \mathrm{OH}$ [16] in the corresponding spectrum of compound VII alongside the signals consistent with its assumed structure appear also weak signals from $\mathrm{NH}, \mathrm{NCH}_{2}, \mathrm{CH}_{2}^{\beta} \mathrm{C}$ and $\mathrm{Me}_{3} \mathrm{Si}$ groups revealing the presence of the second rotary isomer that is stable due to hindered amide rotation [17] (Table 2).

In contrast to aliphatic diamines II, III 1,2-phenylenediamine IV is acylated with trimethylsilylpropiolyl chloride at the same reagents ratio ($2: 1$) regioselectively at one amino group. The previously unknown N-phenylamino-3-trimethylsilylpropiolamide (VIII), initial compound for further transformation into the corresponding trimethylsilylethynylbenzimidazole, was prepared in THF solution at $-40^{\circ} \mathrm{C}$ in 64% yield. Its structure was proved by IR, ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, and ${ }^{29}$ Si NMR spectra presented in Tables 1 and 2.

In the IR spectrum of N-phenylamino-3-trimethylsilylpropiolamide (VIII) are present absorption bands in the region 740, 847, 1251 ($\mathrm{Si}-\mathrm{Me}$), 1620 ($\mathrm{C}=\mathrm{O}$), $1580(\mathrm{Ph}), 2175(\mathrm{Si}-\mathrm{C} \equiv \mathrm{C})$ and $3230(\mathrm{NH})$ and $3365 \mathrm{~cm}^{-1}\left(\mathrm{NH}_{2}\right)$; to bending vibrations of $\mathrm{N}-\mathrm{H}$ bond corresponds the absorption band at $1530 \mathrm{~cm}^{-1}$.

Reaction of trimethylsilylpropiolyl chloride (I) with 2-aminoethanethiol (V) at reagents ratio 1:2 also occurred at a single reaction center providing previously unknown N-2-(mercaptoethyl)-3-trimethylsilylpropiolamide (IX). The reaction required more stringent conditions (benzene, $80^{\circ} \mathrm{C}, 9 \mathrm{~h}$).

Thioamide IX was isolated by column chromatography on silica gel L 40/100, eluent chloroformmethanol, 10:1. IR spectrum of $\mathrm{N}-2$ (mercaptoethyl)-3-trimethylsilylpropiolamide (IX) contained absorption bands of stretching vibrations of $\mathrm{Si}-\mathrm{Me}$ (750, $\left.830,1240 \mathrm{~cm}^{-1}\right)$, of $\mathrm{C}=\mathrm{O}\left(1630 \mathrm{~cm}^{-1}\right)$, of triple bond $\mathrm{Si}-\mathrm{C} \equiv \mathrm{C}\left(2160 \mathrm{~cm}^{-1}\right)$, $\mathrm{SH}\left(2540 \mathrm{~cm}^{-1}\right)$, and of NH bond ($3270 \mathrm{~cm}^{-1}$); to the bending vibrations of $\mathrm{N}-\mathrm{H}$
bond corresponded an absorption band at $1520 \mathrm{~cm}^{-1}$ (Table 1). In the ${ }^{1} \mathrm{H}$ NMR spectrum of amide XI appear a singlet of methyl groups protons $\left(\mathrm{Me}_{3} \mathrm{Si}\right)$ at 0.21 ppm , a broadened singlet of NH group at 6.99 ppm , a triplet of SH group at 1.46 ppm , and a quartet of $\mathrm{CH}_{2}-\mathrm{N}$ group at 3.45 ppm (Table 2).

Thus unlike hydroxyamines the acylation of diamines and 2-aminoethanethiol with trimethylsilyl-
propiolyl chloride occurs cleanly yielding silylated acetylene amides without preliminary silylation of amines. Whereas the aliphatic diamines were acylated at both amino groups, 1,2-phenylenediamine reacted at a single amino group apparently because of steric hindrances. With 2 -aminoethanethiol the reaction occurred at the more basic center providing the corresponding trimethylsilylpropiolic acid mercaptoamide.

EXPERIMENTAL

IR spectra of compounds VI-IX were recorded on spectrophotometer Specord 75IR from thin films or KBr pellets. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, and ${ }^{29} \mathrm{Si}$ NMR spectra were registered on spectrometer Bruker DPX-400 from solutions in CDCl_{3}, internal reference HMDS.

Trimethylsilylpropiolic acid N -2-(3-trimethylsilylpropiolylaminoethyl)amide (VI). To a solution of $1.83 \mathrm{~g}(30 \mathrm{mmol})$ of ethylenediamine in 10 ml of anhydrous ethyl ether was added dropwise at $-10 \div-5^{\circ} \mathrm{C}$ within $20 \mathrm{~min} 2.42 \mathrm{~g}(15 \mathrm{mmol})$ of acyl chloride (I) in 10 ml of ether. The stirring was continued for 1 h more at room temperature. The reaction mixture was quenched with water, the products were extracted into ether. The extract was washed in succession with 5% aqueous hydrochloric acid, 5% solution of NaHCO_{3}, with water, and then dried with MgSO_{4}. On removing the solvent we obtained 2.3 g (74%) of compound VI, mp 125$126^{\circ} \mathrm{C}$ (from cyclohexane).

Trimethylsilylpropiolic acid N-6-(3-trimethylsilylpropiolylaminohexyl)amide (VII). To a solution of 1.58 g (13.6 mmol) of hexamethylenediamine (III) in 10 ml of anhydrous ethyl ether was added dropwise at $-5-0^{\circ} \mathrm{C}$ within $30 \mathrm{~min} 1.1 \mathrm{~g}(6.8 \mathrm{mmol})$ of acyl chloride (\mathbf{I}) in 5 ml of ether. After usual workup and removal of solvent we separated 1.3 g (83%) of compound VII, mp 117-119 ${ }^{\circ} \mathrm{C}$ (from carbon tetrachloride).
\boldsymbol{N}-Phenylamino-3-trimethylsilylpropiolamide (VIII). To a solution of $1.47 \mathrm{~g}(13.6 \mathrm{mmol})$ of 1,2-phenylenediamine (IV) in 10 ml of anhydrous THF at $-40^{\circ} \mathrm{C}$ was added dropwise a solution of 1.1 g (6.8 mmol) of acyl chloride \mathbf{I} in 5 ml of anhydrous THF. The reaction mixture was warmed to room temperature and quenched with 10 ml of water. After the usual workup and removal of the solvent we obtained 1 g (64\%) of compound VIII, mp 135$136^{\circ} \mathrm{C}$ (from cyclohexane).
\boldsymbol{N}-2-(Mercaptoethyl)-3-trimethylsilylpropiolamide (IX). To a solution of 1.7 g (22 mmol) of 2-aminoethanethiol (\mathbf{V}) in 10 ml of anhydrous benzene at $45^{\circ} \mathrm{C}$ was added dropwise a solution of 1.8 g
$(6.8 \mathrm{mmol})$ of acyl chloride \mathbf{I} in 10 ml of benzene, then the mixture was heated at reflux for 9 h . The reaction mixture was cooled to room temperature and quenched with 10 ml of water. After the usual workup and removal of the solvent the residue was subjected to column chromatography on silica gel L 40/100, eluent chloroform-methanol, 10:1. We isolated $1.75 \mathrm{~g}(79 \%)$ of compound IX.

REFERENCES

1. Kumar, P., Vrat, S., Dhawan, K.N., Satsangi, R.K., Kishore, K., and Bhargawa, K.P., Indian J. Chem. Sect. B, 1981, vol. B20, no. 6, pp. 517-518.
2. Res. Discl., 1975, vol. 140. 17-19., Chem. Abstr., 1976, vol. 84, 97781a.
3. German Patent 3006 916, 1979. Chem. Abstr., 1981, vol. 94, 12156.
4. Lany, S.A. and Cohen, E., J. Med. Chem., 1975, vol. 18, no. 4, pp. 41-43.
5. Schulte, K.E. and Rucker, G., Progr. Drug. Res., 1970, vol. 14, pp. 387-563.
6. Japan Patent 79135 224, 1978; Chem. Abstr., 1980, vol. $92,148662 \mathrm{n}$.
7. Japan Patent 79132 532, 1978; Chem. Abstr., 1980, vol. 92, 163728q.
8. Japan Patent 79103 868, 1978; Chem. Abstr., 1980, vol. 92, 181000t.
9. Pattenden, G. and Tankard, M., Tetrahedron Lett., 1993, vol. 34, no. 16, pp. 2677-2680.
10. Coppola, G.M. and Damon, R.E., J. Heterocyclic Chem., 1995, vol. 32, no. 4, pp. 1141-1144.
11. Coppola, G.M. and Damon, R.E., J. Heterocyclic Chem., 1995, vol. 32, no. 4, pp. 1133-1139.
12. Safronova, L.P., Medvedeva, A.S., and Vyazankin, N.S., Zh. Org. Khim., 1983, vol. 53, no. 6, pp. 1313-1315.
13. Safronova, L.P., Medvedeva, A.S., Klyba, L.V., Bochkarev, V.N., and Andreev, M.V., Zh. Org. Khim., 2000, vol. 36, no. 2, pp. 208-213.
14. Medvedeva, A.S., Safronova, L.P., Vyazankin, N.S., Voronkov, M.G., Andreeva, E.I., Fursenko, E.I., Ponomareva, E.E., Sanin, M.A., Andrianova, N.I., Gushchin, B.E., Chumakova, E.I., Erokhova, L.N., and Tsareva, Inventor's Certificate 1531403, 1989; Byull. Izobr., 1989, no. 47, p. 277.
15. Safronova, L.P., Medvedeva, A.S., Vyazankin, N.S., Zaks, A.S., and Yushkov, V.V., Inventor's Certificate 1048757, 1983; Byull. Izobr., 1983, no. 38, p. 213.
16. Medvedeva, A.S., Andreev, M.V., Safronova, L.P., Sarapulova, G.I., Pavlov, D.V., and Afonin, A.V., Zh. Org. Khim., 2001, vol. 38, no. 1, pp. 20-24.
17. Stewart, W.E. and Siddal, T.H, Chem. Rev., 1970, vol. 70, no. 5, pp. 517-551.

[^0]: ${ }^{\text {a }}$ IR spectrum $\left(v, \mathrm{~cm}^{-1}\right): 1580(\mathrm{Ph}), 3365\left(\mathrm{NH}_{2}\right) .{ }^{\mathrm{b}} \mathrm{IR}$ spectrum $\left(v, \mathrm{~cm}^{-1}\right): 2540(\mathrm{SH})$. Found, \%: S 15.60. Calculated, \%: S 15.92.

